To sell Jesus on the basis of meeting felt needs is fine so long as we define how exactly He “meets” those needs. If meeting those needs means the removal of the sin, sorrow, and disappointment of human life, then we’ll be perpetually disappointed. If meeting those needs means that Jesus uses our unfulfilled desires to keep us dependent and reliant upon Him, then we’re getting close to the secret of the full life that Christ offers.
Puzzled 2
Saturday, August 23, 2014
Astonished by Mike Erre #01
Sunday, August 17, 2014
Dian Sheng 3x3x2
This was the cheapest one I could find, and it is a bit disappointing. It does not turn very well around the circle. I have attempted to loosen it up by adding lubricant, but it hasn't helped a lot. Maybe some. I think I will avoid this puzzle maker in the future.
On the plus side, as I was playing with it, not only was I able to remember how to solve it without looking at my notes from the past, but I also came up with a new and better way to solve the two edges that are adjacent to the corner.
Drat. I should have written it down immediately. Now I can't get it.
(Later) OK, I've come up with something but I don't think it is what I came up with this afternoon. But here it is. After getting the circles filled correctly locate the corner—on this puzzle it is the red, white, blue corner. With the white circle on bottom, use either setup moves or EPS to place the bluewhite (or redwhite) edge on top and across from where it needs to go. Spin the corner to the top so that the bluewhite (or redwhite) is directly across from its spot beside the corner. Do (M2 U2) x 2 to move it across. Move the corner and edge that are now paired up back around to the bottom.
I think this is easier than the former method I used, but probably not a whole lot. I think it is somewhat similar to what I came up with earlier today. It seemed so intuitive this afternoon.
August 20, 2014
After a number of scrambles and solves, the turning quality has improved enough that I am not quite so disappointed anymore.
On the plus side, as I was playing with it, not only was I able to remember how to solve it without looking at my notes from the past, but I also came up with a new and better way to solve the two edges that are adjacent to the corner.
Drat. I should have written it down immediately. Now I can't get it.
(Later) OK, I've come up with something but I don't think it is what I came up with this afternoon. But here it is. After getting the circles filled correctly locate the corner—on this puzzle it is the red, white, blue corner. With the white circle on bottom, use either setup moves or EPS to place the bluewhite (or redwhite) edge on top and across from where it needs to go. Spin the corner to the top so that the bluewhite (or redwhite) is directly across from its spot beside the corner. Do (M2 U2) x 2 to move it across. Move the corner and edge that are now paired up back around to the bottom.
I think this is easier than the former method I used, but probably not a whole lot. I think it is somewhat similar to what I came up with earlier today. It seemed so intuitive this afternoon.
August 20, 2014
After a number of scrambles and solves, the turning quality has improved enough that I am not quite so disappointed anymore.
CT Square1
I have so enjoyed the Cubetwist Bandage Kit this summer that I decided to get a CT Square1. Earlier in the summer I played around with the Super Square1 enough to work out another "map" to getting back to cube shape, but the Super Square1 is such a pain to align that it is not at all fun to play with, and if puzzling isn't fun, then what is the point? Yesterday I scrambled and solved the CT Square1 several times and it is fun to play with.
In The Land of 52 there are several paths that you can run across.
If you come to a 12 look for 32.
If you come to 22, 24, or 36 look for 44.
If you come to 21, 23, or 25 look for 2H/44.
If you come to 14 look for 33.
If you come to 13 look for House/33, then go to 2H/2T.
Once at 32 or 44, look for 2T/2B.
From all others, look for LH/RH.
Go to 2H/2H, and from there to Cube.
The above is not supposed to mean anything to anyone except me. If you can figure out what I am talking about, you have probably figured out how to solve the Square1 without my help! :D
In The Land of 52 there are several paths that you can run across.
If you come to a 12 look for 32.
If you come to 22, 24, or 36 look for 44.
If you come to 21, 23, or 25 look for 2H/44.
If you come to 14 look for 33.
If you come to 13 look for House/33, then go to 2H/2T.
Once at 32 or 44, look for 2T/2B.
From all others, look for LH/RH.
Go to 2H/2H, and from there to Cube.
The above is not supposed to mean anything to anyone except me. If you can figure out what I am talking about, you have probably figured out how to solve the Square1 without my help! :D
Saturday, August 16, 2014
New Puzzles from Cubezz.com
Awhile back our house was broken into and around 40 of my around 80 puzzles were stolen. During the summer I replaced the CT Bandage Kit and got tons of use out of it as indicated by previous blog posts. After we got back from our summer trip, I ordered 8 puzzles from Cubezz.com. Some are to replace stolen ones, some are new to me. Here is what I got.
 Lanlan Curvy Copter replaces the Curvy Copter and Helicopter Cubes that were stolen.
 CT Square1 replaces the Square1 that got stolen and the irritating Super Square1 that I wish had. It is just the alignment thing with the stupid circle part. Now that I have a nice Square1 perhaps I'll play with it enough to no longer need the notes I made way back when I first figured it out.
 Cyclone Boys 2x2 Cube and 4x4 Cube. These are colored plastic cubes, which I like a lot, and they seem to work well.
 DianSheng Crazy 3x3x2 replaces the 3x3x2 and Crazy 3x3x2 that were stolen. This one does not turn very well. Perhaps with some lubrication it will work better.
 Dino Skewb or FSkewb is new to me but I think it is sort of like the Master Skewb that was stolen only simpler.
 QJ Fourleaf Clover Hollow Ball appears to be a very nice 2x2x2 puzzle. I hope Annie likes it.
 2x3x4 Camoflage Cube is brand new to me. I've never had any of these before, or anything like it that I know of. Should be fun.
Thursday, August 7, 2014
Bandage Cube Kit—Cross Road Cube
We traveled from Prague to Sacramento on the 5th of the month. Along the way I worked on the Cross Cube and documented the adventure in a binder. Here's the story—
August 7, 2014
Today I saw that
A lot like the Meffert's Bandage Cube, or the Bicube, only the 2x2x2 block of pieces diagonally opposite the 1x1x1 of the Bicube is unbandaged, so is indeed more 2x2x2 ish.
Since I have had the Meffert's cube for a long time and am somewhat familiar with the screwy color scheme he used, I tiled the Cross Cube to match, so as to avoid any confusion.
On the first scramble the bluewhite and orangewhite edges fell into place as I oriented the centers. The big challenge was pairing up the blueorangewhite 2x1x1. After that I solved it as the Bicube with no problem.
On the second scramble I made sure each piece was scrambled. Getting the 2x2x2 corner was somewhat challenging but I finally got it and went to my Bicube solve. All was going well until I got to what should have been the last step—the 743 3cycle. But instead, 7 and 3 had to swap and flip. Huh?!?
Figuring it had something to do with the 2x2x2 corner, I used it to twist one of the pieces to the other one. Things were pretty messed up so I resolved and 7 and 3 were no longer swapped. 7 and 8 were! But at least they weren't flipped. :D
Decided on a new approach. Point greens down since with the little ones on the blue side they could be pointing back without pointing them back. Then put the 1x1x1 on top on the left and do a mirror solve. By the time I did what I could do, I put the greens at the back and fixed the top and... found 3 and 6 were swapped.
Tried something else—don't remember what—ended up needing a 4cycle, which is not any better than a swap. So I did a 5cycle to see what would happen. 4 and 6 were swapped. Did the place #5 algorithm. It then needed a 6cycle. Did it repeatedly, and it just cycled through a bunch of 6cycles until it came back to the single swap.
A little background. I got up at 4 AM in Prague to get ready to go to the airport and fly home. We flew to London. Had a several hour layover. Flew to Dallas. Had an even longer layover. On the flight to Sacramento I wrote:
Altogether it has been a very long day. In Dallas I scrambled the 2x2x2 corner and couldn't get it back. During the biginning of the flight to Sacramento I tried and failed and was getting frustrated. Being awake for 24 hours may or may not have something to do with it.
After forcing down a can of Ginger Ale I tried to sleep. I slept some although I dept waking up. Finally I decided to get the cube out, solve it as much as possible, then retile the pieces I couldn't solve. But instead of the redyellowgreen corner, I was using the bluewhiteorange one as the #2 corner. After several tries through the #5 routine I noticed the bluewhiteorange had twisted and was paired up perfectly with the bluewhite edge. I put them home. Then #6, #8, and #1. I don't think I had to cycle 743. It was solved! No pair swapped! Somewhere in the trying to solve the 2x2x2 corner I suppose, I remedied the swap problem.
Played around with it for a bit more. Somehow twisted #2 clock and #8 anti. All else was still solved. How? I had an idea, but hadn't written it down. Started writing.
Fi U L F U Li U2 (#5)
F R U Fi Ui
Fi U L F U Li U2 (#5)
Ri
Fi U L F U Li U2 (#5)
Double swap; 743; double swap; 743 x 2
The above twists #2 anti and #8 clock.
I still do not know how to systematically fix the situation in which 2 pieces need to swap.
August 7, 2014
Today I saw that
Fi U L F U Li U2 (#5)
F R U Fi Ui
Fi U L F U Li U2 (#5)
Ri
Fi U L F U Li U2 (#5)
times two twists #2 clock and #8 anti. Can that be?
And after more experimentation and solving, I finally scrambled it in such a way that I got the single swap again. And still have no idea how or why or what to do about it.
August 8, 2014
OK. I have an idea. An intelligent guess. From solved I did R Bi Ri. That took the orangewhite edge out of place. Then I tried to keep track of things but got hopelessly lost eventually, but managed to get the orangewhite edge back home without turning B 90°. Upon solving the cube from there, I ended up with 2 swapped pieces, 3 and 4. I just don't have a nice neat algorithm for doing it. I think the single 90° turn of B key to the single swap situation. It isn't polished but I got something.
R B Ui L Ui Fi L D2 L2 does a 90° turn of B then restores the blueorange and whiteorange edges. It wasn't easy to unlock the resulting bandages on F and R, but eventually got it and solved the puzzle! Yay!
times two twists #2 clock and #8 anti. Can that be?
And after more experimentation and solving, I finally scrambled it in such a way that I got the single swap again. And still have no idea how or why or what to do about it.
August 8, 2014
OK. I have an idea. An intelligent guess. From solved I did R Bi Ri. That took the orangewhite edge out of place. Then I tried to keep track of things but got hopelessly lost eventually, but managed to get the orangewhite edge back home without turning B 90°. Upon solving the cube from there, I ended up with 2 swapped pieces, 3 and 4. I just don't have a nice neat algorithm for doing it. I think the single 90° turn of B key to the single swap situation. It isn't polished but I got something.
R B Ui L Ui Fi L D2 L2 does a 90° turn of B then restores the blueorange and whiteorange edges. It wasn't easy to unlock the resulting bandages on F and R, but eventually got it and solved the puzzle! Yay!
Sunday, August 3, 2014
Bandage Cube Kit—Double Block Clock
The Sune Thing (TST)
Green on Right; Yellow Up
R U Ri U R U2 Ri (DE)2 Ui L Ui Li y2
Everything else is done with Green Up; Yellow on Right
Corner Twisters (edit 8/12/14 below: a better way found)
CT#1
2, 3, 6, 7 anti; 8 clock
(TST)—R (R U Ri Ui) Ri—(R U Ri Ui)x3
CT#2
2, 8 clock; 3,7 anti
(TST)x2—R (U R Ui Ri) Ri—(R U Ri Ui)x3—R (R U Ri Ui)x3 Ri—(R U Ri Ui)x3
CT#3
2, 7 clock; 6,8 anti
(TST)x3—(R U Ri Ui)x3—R (R U Ri Ui)x3 Ri—(R U Ri Ui)x3—R (U R Ui Ri)x3 Ri
CT#4
2, 3 anti; 6, 8 clock
(TST)x4—R (R U Ri Ui)x4 Ri—(R U Ri Ui)x3—R (R U Ri Ui)x3 Ri
CT#5
2, 3, 6 anti
CT#3—CT#2
CT#6
3 anti; 6 clock
CT#3—CT#1
CT#7
2 anti; 6 clock
CT#3—R (R U Ri Ui) Ri—CT#2—R (U R Ui Ri) Ri
CT#8
3, 7 clock; 6, 8 anti
CT#2—CT#1
So far I've solved it once. I forget now which CT I used at the end. I'd like to do multiple solves and keep track.
August 4, 2014
It is really pretty simple to solve all the edges, even if they need flipped. Permuting the corners hasn't been a problem either. It is orienting the corners that can be difficult. Got down to needing to twist 2 and 8. Twisted 2 and 6, then swapped 28 and 36, then twisted 2, 3, and 6. I finally ended up needing to twist 2 and 6, which I could do. Something like that.
August 12, 2014
In spite of what I said on the 4th of the month, I was not able to flip edges today when I tried to solve Double Block Clock, until I looked at the flipper for Double Block. Here is how it plays out for DBC:
Flipping Edges—R (U2 L F Li U2) Ri (U2 L F Li U2) (U R2 Ui R2) flips UB and UR and double swaps some corners.
Twisting Corners—Doing the Edge Flipper twice twists 2 anti and 3, 6, 7, and 8 clock.
Twisting 2 anti and 3 clock the easy way—((R Ui Li B L U Ri) (R U Ri Ui)) x 2 (R U Ri Ui) x 3
August 14, 2014
Although I found an easier way to twist corners 2 and 3 a couple days ago, it still isn't so easy to access all the corners that may need twisting. So I kept experimenting along the same lines—
Twisting 2 clock and 3 anti—((R Ui Li Bi L U Ri) (U R Ui Ri)) x 2 (U R Ui Ri) x 3
Twisting 3 anti and 6 clock—(R2 Ui Li B L U2 Ri Ui Ri) x 2 R (R U Ri Ui) x 3 Ri
Twisting 2 clock and 8 anti—(R2 Ui Li Bi L U2 Ri Ui R U Ri Ui Ri) x 2 R (R U Ri Ui) x 3 Ri
It is a simple thing to swap 2 with 3 and 7 with 8, so it would be a simple setup to twist 3 and 7.
It is a simple thing to swap 3 with 6 and 2 with 8, so it would be a simple setup to twist 6 and 8.
This covers 5 of the 10 pairs of corners that may need twisting. But of course each of these twists a pair in opposite directions. I'm thinking that in combination with the Edge Flipper Corner Twister ... I don't know ... many actual combinations could be dealt with. But I wonder how many others could not.
August 15. 2014
An endgame: The greenyellow and orangeyellow edges were swapped and the corners were in a 4cycle. B 90° turned the swap into a 3cycle, but, of course, one of the edges was the bluered. So I had to move something that wasn't part of the 3cycle into BD to replace it, do the 3cycle, then move the bluered back. A lot of edgeflipping was needed too, including the bluered, so it got moved out, flipped, and moved back in again. When finally the edges were all solved, 5 corners needed permuted. Two quick TripleEPS left me with all of them permuted, and 2 needing to twist anti and 8 clock. I used an EPS to swap them, then did the 2 clock 8 anti twister, then undid the setup move. Done.
Another endgame: Similar situation with edges, but this time I tried to make fewer trips in and out of BD, doing the cycle and flip during one trip. When all the edges were solved, corners 3 and 8 needed to swap, and corners 6 and 7 needed to swap. A Sune, TripleEPS, Antisune permuted them, leaving 6 needing a clockwise twist and 8 an anti twist. I twisted them, but the wrong way, so did it again, but messed up somewhere—I think on the UR EPS. After resolving the edges, it needed a 26 37 double swap. Several TripleEPS later the corners were permuted and 3 needed to twist clock and 6 anti. I set them up with a swap, did the 36 twister, and undid the setup.
In both of the solves above, getting to the endgame required moving the redblue piece back home without a simple B 90° move, as that would put it back into a single swap of edges scene. I used R Ui Li B L U Ri to move it out. But is there any reason I couldn't use Ui L2 D L2 U instead?
Green on Right; Yellow Up
R U Ri U R U2 Ri (DE)2 Ui L Ui Li y2
Everything else is done with Green Up; Yellow on Right
Corner Twisters (edit 8/12/14 below: a better way found)
CT#1
2, 3, 6, 7 anti; 8 clock
(TST)—R (R U Ri Ui) Ri—(R U Ri Ui)x3
CT#2
2, 8 clock; 3,7 anti
(TST)x2—R (U R Ui Ri) Ri—(R U Ri Ui)x3—R (R U Ri Ui)x3 Ri—(R U Ri Ui)x3
CT#3
2, 7 clock; 6,8 anti
(TST)x3—(R U Ri Ui)x3—R (R U Ri Ui)x3 Ri—(R U Ri Ui)x3—R (U R Ui Ri)x3 Ri
CT#4
2, 3 anti; 6, 8 clock
(TST)x4—R (R U Ri Ui)x4 Ri—(R U Ri Ui)x3—R (R U Ri Ui)x3 Ri
CT#5
2, 3, 6 anti
CT#3—CT#2
CT#6
3 anti; 6 clock
CT#3—CT#1
CT#7
2 anti; 6 clock
CT#3—R (R U Ri Ui) Ri—CT#2—R (U R Ui Ri) Ri
CT#8
3, 7 clock; 6, 8 anti
CT#2—CT#1
So far I've solved it once. I forget now which CT I used at the end. I'd like to do multiple solves and keep track.
August 4, 2014
It is really pretty simple to solve all the edges, even if they need flipped. Permuting the corners hasn't been a problem either. It is orienting the corners that can be difficult. Got down to needing to twist 2 and 8. Twisted 2 and 6, then swapped 28 and 36, then twisted 2, 3, and 6. I finally ended up needing to twist 2 and 6, which I could do. Something like that.
August 12, 2014
In spite of what I said on the 4th of the month, I was not able to flip edges today when I tried to solve Double Block Clock, until I looked at the flipper for Double Block. Here is how it plays out for DBC:
Flipping Edges—R (U2 L F Li U2) Ri (U2 L F Li U2) (U R2 Ui R2) flips UB and UR and double swaps some corners.
Twisting Corners—Doing the Edge Flipper twice twists 2 anti and 3, 6, 7, and 8 clock.
Twisting 2 anti and 3 clock the easy way—((R Ui Li B L U Ri) (R U Ri Ui)) x 2 (R U Ri Ui) x 3
August 14, 2014
Although I found an easier way to twist corners 2 and 3 a couple days ago, it still isn't so easy to access all the corners that may need twisting. So I kept experimenting along the same lines—
Twisting 2 clock and 3 anti—((R Ui Li Bi L U Ri) (U R Ui Ri)) x 2 (U R Ui Ri) x 3
Twisting 3 anti and 6 clock—(R2 Ui Li B L U2 Ri Ui Ri) x 2 R (R U Ri Ui) x 3 Ri
Twisting 2 clock and 8 anti—(R2 Ui Li Bi L U2 Ri Ui R U Ri Ui Ri) x 2 R (R U Ri Ui) x 3 Ri
It is a simple thing to swap 2 with 3 and 7 with 8, so it would be a simple setup to twist 3 and 7.
It is a simple thing to swap 3 with 6 and 2 with 8, so it would be a simple setup to twist 6 and 8.
This covers 5 of the 10 pairs of corners that may need twisting. But of course each of these twists a pair in opposite directions. I'm thinking that in combination with the Edge Flipper Corner Twister ... I don't know ... many actual combinations could be dealt with. But I wonder how many others could not.
August 15. 2014
An endgame: The greenyellow and orangeyellow edges were swapped and the corners were in a 4cycle. B 90° turned the swap into a 3cycle, but, of course, one of the edges was the bluered. So I had to move something that wasn't part of the 3cycle into BD to replace it, do the 3cycle, then move the bluered back. A lot of edgeflipping was needed too, including the bluered, so it got moved out, flipped, and moved back in again. When finally the edges were all solved, 5 corners needed permuted. Two quick TripleEPS left me with all of them permuted, and 2 needing to twist anti and 8 clock. I used an EPS to swap them, then did the 2 clock 8 anti twister, then undid the setup move. Done.
Another endgame: Similar situation with edges, but this time I tried to make fewer trips in and out of BD, doing the cycle and flip during one trip. When all the edges were solved, corners 3 and 8 needed to swap, and corners 6 and 7 needed to swap. A Sune, TripleEPS, Antisune permuted them, leaving 6 needing a clockwise twist and 8 an anti twist. I twisted them, but the wrong way, so did it again, but messed up somewhere—I think on the UR EPS. After resolving the edges, it needed a 26 37 double swap. Several TripleEPS later the corners were permuted and 3 needed to twist clock and 6 anti. I set them up with a swap, did the 36 twister, and undid the setup.
In both of the solves above, getting to the endgame required moving the redblue piece back home without a simple B 90° move, as that would put it back into a single swap of edges scene. I used R Ui Li B L U Ri to move it out. But is there any reason I couldn't use Ui L2 D L2 U instead?
Friday, August 1, 2014
Bandage Cube Kit—Double Block
Double Block is another one of Burgo's creations. On October 28, 2012 he posted:
With the two blocks solved and Green Up and White on the Left, the 5 corners, and 5 of the 7 edges are easily permuted with moves of R and U. My main algorithms?
1. (Ri U R Ui) x n and (R U Ri Ui) x n where n is an element of {1, 2, 3}. In other words, EPS, DoubleEPS, and TripleEPS.
2. Ui L2 D L2 U moves FD and BD into U and R.
3. (R U R Ui R U R Ui R) swaps UR and UB and cycles 4 corners.
4. (R U Ri U R U2 Ri)—Sune— works with Yellow Up and Green Right, but in my solves so far I haven't used it to move edges.
5. I haven't come up with, or needed, a 3cycle of corners. The 3 double swaps have been adequate for permuting corners.
6. Twisting Corners—to me, this is what puts this puzzle in the Difficult range. First, I'll give the algorithm, then I'll explain how I came up with it.
Twisting 6 clock and 7 anti Steps
1. Hold Yellow Up and Green on R.
2. ((Righthand Sune) (DE)2 L (Lefthand Sune) Li (DE)2) x 3
3. Hold White on Left and Green Up.
4. (R U Ri Ui) x 3
5. (Ri U R Ui) x 3
No long, complex, unfamiliar sequences at all! But how did I come up with that process? Well, I knew I could use Sune with Yellow Up and Green on the Right. I knew that because of the 2x2x1 block I couldn't use the Sune/mirror method of twisting corners simply. But what did I have to lose. Figured I would try to do something like it and see what happened. I did it 3 times to preserve the edges. After step 2 I went back to White on the Left and Green Up and looked at the corners. I saw that corner 2 (FRU) needed to go to 3 (RFD) so I did the TripleEPS that would do that. Then I looked at the corners and saw that 2 and 7 (URB) needed to swap, and 6 (DRB) and 8 (ULB) needed to swap, so I did the TripleEPS that would do that. Then I looked at the corners and noticed that 6 twisted clockwise and 7 anticlockwise. Golden. :D
August 3, 2014
Oh no!!!! I was afraid it couldn't be that easy. After having such an easy time "figuring out" Double Block, I moved on to Double Block Clock. The Clock part made it impossible to twist corners as with Double Block. So I was exploring different things I could do with it, and discovered a whole new way of scrambling Double Block that does funky things like flipping edges. So no more DB Clock until I have a go at the revisited Double Block with new twists and turns not covered on the first go round.
7. Flipping Edges—(U2 L F Li U2) Ri (U2 L F Li U2) R flips UB and RB and restores FD.
OK, Mildly Addicted here :oops:He listed it as Difficult, and added another bandage, calling it Double Block Clock, which he listed as Very Hard. I don't know about Double Block Clock yet, but Double Block fell together nicely for me. I wonder if there is something in the scrambling that I am missing that would make it more difficult. I don't think so, but if someone would like to challenge me with a Double Block scramble, I'd me more than willing to try it out.
I thought I'd make an easy one.. turned out to be `a little tougher` than I first thought. *Warning* this one's trouble :wink: . I called it the Double Block.. for more than one reason. My method for this one is a little scrappy at present, see what you think.
With the two blocks solved and Green Up and White on the Left, the 5 corners, and 5 of the 7 edges are easily permuted with moves of R and U. My main algorithms?
1. (Ri U R Ui) x n and (R U Ri Ui) x n where n is an element of {1, 2, 3}. In other words, EPS, DoubleEPS, and TripleEPS.
2. Ui L2 D L2 U moves FD and BD into U and R.
3. (R U R Ui R U R Ui R) swaps UR and UB and cycles 4 corners.
4. (R U Ri U R U2 Ri)—Sune— works with Yellow Up and Green Right, but in my solves so far I haven't used it to move edges.
5. I haven't come up with, or needed, a 3cycle of corners. The 3 double swaps have been adequate for permuting corners.
6. Twisting Corners—to me, this is what puts this puzzle in the Difficult range. First, I'll give the algorithm, then I'll explain how I came up with it.
Twisting 6 clock and 7 anti Steps
1. Hold Yellow Up and Green on R.
2. ((Righthand Sune) (DE)2 L (Lefthand Sune) Li (DE)2) x 3
3. Hold White on Left and Green Up.
4. (R U Ri Ui) x 3
5. (Ri U R Ui) x 3
No long, complex, unfamiliar sequences at all! But how did I come up with that process? Well, I knew I could use Sune with Yellow Up and Green on the Right. I knew that because of the 2x2x1 block I couldn't use the Sune/mirror method of twisting corners simply. But what did I have to lose. Figured I would try to do something like it and see what happened. I did it 3 times to preserve the edges. After step 2 I went back to White on the Left and Green Up and looked at the corners. I saw that corner 2 (FRU) needed to go to 3 (RFD) so I did the TripleEPS that would do that. Then I looked at the corners and saw that 2 and 7 (URB) needed to swap, and 6 (DRB) and 8 (ULB) needed to swap, so I did the TripleEPS that would do that. Then I looked at the corners and noticed that 6 twisted clockwise and 7 anticlockwise. Golden. :D
August 3, 2014
Oh no!!!! I was afraid it couldn't be that easy. After having such an easy time "figuring out" Double Block, I moved on to Double Block Clock. The Clock part made it impossible to twist corners as with Double Block. So I was exploring different things I could do with it, and discovered a whole new way of scrambling Double Block that does funky things like flipping edges. So no more DB Clock until I have a go at the revisited Double Block with new twists and turns not covered on the first go round.
7. Flipping Edges—(U2 L F Li U2) Ri (U2 L F Li U2) R flips UB and RB and restores FD.
Tuesday, July 29, 2014
Bandage Cube Kit—Pendulum
Andrea of Germany came up with this one and posted it on the twistypuzzles.com forum back in November 2012. Burgo rated it as difficult. I confer. I've given it three good scrambles. On the first one, after getting down to needing a corner 3cycle to finish up, I retiled for further analysis. After coming up with some more corner 3cycles and a way to flip edges and twist corners, I solved it completely a couple times. The last time I had to flip all 4 edges and twist 5 corners at the end.
After solving the bandaged pieces, I placed the edges. It is an easy task and seeing which ones that need to flip is so much easier for me when they are in place. Using 90° turns of the white bar and the red bar, pairs of edges can be flipped. More specifically, with orange up and yellow on front, M2 (F U F2 Ui F) (Ri F2 R F2) M2 flips UR and FR. It also 5 cycles corners. The first (section) does the flipping, and the second (section) puts them back in place. During the solve I don't really put the edges at UR and FR and do the algorithm. It doesn't really matter which side the one on top is on, and it doesn't matter which side the one on bottom is on. Turn the one on bottom that needs flipped down with either F or Fi. Turn the one on top that needs flipped to UF. Swap them with F2 and they are flipped when the bandaged pieces are put back home. After the edges are flipped and solved the hard part comes—the corners.
During the experimentation and analysis stage I came up with 4 key sequences that can be used to solve the corners. I'm thinking that perhaps with further work the method could be refined and simplified, but I'm ready to move on. Annie wants to help me tile a new puzzle. :D
S1: M R U2 Ri U2 Mi = FR > UR > UL; 18327; x3 pure cycles 12873; doesn't move 4
S2: M Li U2 L U2 Mi = FL > UL > UR; 18274; x3 pure cycles 17842; doesn't move 3
S3: M2 Ri F2 R F2 M2 = UR > FR > FL; 14723; x3 pure cycles 12437; doesn't move 8
S4: M2 L F2 Li F2 M2 = UL > FL > FR; 14238; x3 pure cycles 13482; doesn't move 7
In practice you don't have to do all the M moves between sequences of these cycles. Just move the white bar either to the top or front, wherever it is needed.
Stringing these together in different combinations yields pure corner 3cycles. After doing the first two, choose the third one by seeing what needs to happen to restore the edges.
S1, S2, S4 cycles corners 1 > 3 > 7
S1, S3, S2 cycles corners 1 > 2 > 7
When looking for the edge flipper I made a happy little discovery.
M2 F U F2 Ui F S3 S2 S3 S4 S1 S3 S2 Mi. Of course there are M moves between the sequences when necessary. What does this do? It flips UR and UF, and it twists corner 3 clockwise and corner 7 anticlockwise. That means if you do the whole thing twice the flipped edges get unflipped and the corners get twisted again, so the net result is to twist 3 anti and 7 clock. Granted, it is a lot of work to twist a couple corners, and if the corners aren't at 3 and 7 it requires some crazy setup moves, but it worked. Perhaps someday I will look at Pendulum again and find a better way.
July 31, 2014
Burgo gave me some feedback on the forum, so I went ahead and looked at his solution method. He used a commutator to cycle corners home Domino style. That meant he had to orient the corners before permuting them. This inspired me to do some more experimenting in two areas. Orienting corners, and cycling corners. It led to a Pure 3cycle for Edges that I will probably never use. I don't know. It might be useful during the orientation phase if I translate it into Orange Up Yellow Front twists. Here it is:
M (U2 R U2 Li U2 Ri U2 L) x 2 Mi cycles FL > UL > FR without scrambling corners.
M ((U2 R U2) Li (U2 Ri U2) L) x 3 Mi does a double swap of corners. 14 and 38.
M ((U2 Li U2) R (U2 L U2) Ri) x 3 Mi does a double swap of corners. 23 and 47.
Holding Yellow Up and Orange Front gives even more possibilities. 27 and 38, and 18 and 47. These numbers are from the point of view of Orange Up and Yellow Front.
As far as the orientation goes, the same technique that flips edges also twists corners. With M2 F U F2 Ui F, Corner 3 twists clockwise and moves to 7. Corner 7 twists anti and moves to 1. The edges adjacent to the corners are the ones that flip. The corner edge pairs swap during F2. Different combinations of F and U can result in different corner edge pairs being reoriented.
Of course, all of this orientation of corners is based on the fact that the moves for placing them do not change the orientation. How do I know if an edge or a corner is oriented correctly before it is placed? With Orange Up and Yellow Front, Blue and Green are on the left and right. The edges and corners without blue or green on the left or right need to be flipped or twisted.
The pure edge flipper and corner twister that I gave a couple days ago can be shortened to simply orientation sequences if you don't care that the pieces move around. I suppose the best case scenario is when two edges need flipped and two corners twisted and you can easily arrange them so that doing one F U F2 Ui F orients them all at once. If no edges need to flip and four corners need to twist, the following sequence will twist 1 and 7 anti and 3 and 4 clock.
((F U F2 Ui F)(Ri F2 R F2)) x 2
And doing it x 4 instead of x 2 twists only two corners: 2 anti and 4 clock.
I'm thinking that a good strategy of solution would be to solve the bandaged pieces first, then with Orange Up and Yellow Front proceed. Orient all the edges and corners. Permute the edges. Permute the corners.
If I were planning to solve this particular puzzle on a regular basis, I might want to master Burgo's method of permuting corners at least, if not also his way of orienting them.
After solving the bandaged pieces, I placed the edges. It is an easy task and seeing which ones that need to flip is so much easier for me when they are in place. Using 90° turns of the white bar and the red bar, pairs of edges can be flipped. More specifically, with orange up and yellow on front, M2 (F U F2 Ui F) (Ri F2 R F2) M2 flips UR and FR. It also 5 cycles corners. The first (section) does the flipping, and the second (section) puts them back in place. During the solve I don't really put the edges at UR and FR and do the algorithm. It doesn't really matter which side the one on top is on, and it doesn't matter which side the one on bottom is on. Turn the one on bottom that needs flipped down with either F or Fi. Turn the one on top that needs flipped to UF. Swap them with F2 and they are flipped when the bandaged pieces are put back home. After the edges are flipped and solved the hard part comes—the corners.
During the experimentation and analysis stage I came up with 4 key sequences that can be used to solve the corners. I'm thinking that perhaps with further work the method could be refined and simplified, but I'm ready to move on. Annie wants to help me tile a new puzzle. :D
S1: M R U2 Ri U2 Mi = FR > UR > UL; 18327; x3 pure cycles 12873; doesn't move 4
S2: M Li U2 L U2 Mi = FL > UL > UR; 18274; x3 pure cycles 17842; doesn't move 3
S3: M2 Ri F2 R F2 M2 = UR > FR > FL; 14723; x3 pure cycles 12437; doesn't move 8
S4: M2 L F2 Li F2 M2 = UL > FL > FR; 14238; x3 pure cycles 13482; doesn't move 7
In practice you don't have to do all the M moves between sequences of these cycles. Just move the white bar either to the top or front, wherever it is needed.
Stringing these together in different combinations yields pure corner 3cycles. After doing the first two, choose the third one by seeing what needs to happen to restore the edges.
S1, S2, S4 cycles corners 1 > 3 > 7
S1, S3, S2 cycles corners 1 > 2 > 7
S1, S4, S3 cycles corners 1 > 4 > 3
S2, S1, S3 cycles corners 2 > 4 > 8
S2, S3, S4 cycles corners 2 > 3 > 4
S2, S4, S1 cycles corners 1 > 8 > 2
S3, S1, S4 cycles corners 1 > 2 > 3
S3, S2, S1 cycles corners 1 > 8 > 7
S3, S4, S2 cycles corners 1 > 7 > 3
S4, S1, S2 cycles corners 2 > 7 > 8
S4, S2, S3 cycles corners 1 > 4 > 2
S4, S3, S1 cycles corners 2 > 8 > 4
When looking for the edge flipper I made a happy little discovery.
M2 F U F2 Ui F S3 S2 S3 S4 S1 S3 S2 Mi. Of course there are M moves between the sequences when necessary. What does this do? It flips UR and UF, and it twists corner 3 clockwise and corner 7 anticlockwise. That means if you do the whole thing twice the flipped edges get unflipped and the corners get twisted again, so the net result is to twist 3 anti and 7 clock. Granted, it is a lot of work to twist a couple corners, and if the corners aren't at 3 and 7 it requires some crazy setup moves, but it worked. Perhaps someday I will look at Pendulum again and find a better way.
July 31, 2014
Burgo gave me some feedback on the forum, so I went ahead and looked at his solution method. He used a commutator to cycle corners home Domino style. That meant he had to orient the corners before permuting them. This inspired me to do some more experimenting in two areas. Orienting corners, and cycling corners. It led to a Pure 3cycle for Edges that I will probably never use. I don't know. It might be useful during the orientation phase if I translate it into Orange Up Yellow Front twists. Here it is:
M (U2 R U2 Li U2 Ri U2 L) x 2 Mi cycles FL > UL > FR without scrambling corners.
M ((U2 R U2) Li (U2 Ri U2) L) x 3 Mi does a double swap of corners. 14 and 38.
M ((U2 Li U2) R (U2 L U2) Ri) x 3 Mi does a double swap of corners. 23 and 47.
Holding Yellow Up and Orange Front gives even more possibilities. 27 and 38, and 18 and 47. These numbers are from the point of view of Orange Up and Yellow Front.
As far as the orientation goes, the same technique that flips edges also twists corners. With M2 F U F2 Ui F, Corner 3 twists clockwise and moves to 7. Corner 7 twists anti and moves to 1. The edges adjacent to the corners are the ones that flip. The corner edge pairs swap during F2. Different combinations of F and U can result in different corner edge pairs being reoriented.
Of course, all of this orientation of corners is based on the fact that the moves for placing them do not change the orientation. How do I know if an edge or a corner is oriented correctly before it is placed? With Orange Up and Yellow Front, Blue and Green are on the left and right. The edges and corners without blue or green on the left or right need to be flipped or twisted.
The pure edge flipper and corner twister that I gave a couple days ago can be shortened to simply orientation sequences if you don't care that the pieces move around. I suppose the best case scenario is when two edges need flipped and two corners twisted and you can easily arrange them so that doing one F U F2 Ui F orients them all at once. If no edges need to flip and four corners need to twist, the following sequence will twist 1 and 7 anti and 3 and 4 clock.
((F U F2 Ui F)(Ri F2 R F2)) x 2
And doing it x 4 instead of x 2 twists only two corners: 2 anti and 4 clock.
I'm thinking that a good strategy of solution would be to solve the bandaged pieces first, then with Orange Up and Yellow Front proceed. Orient all the edges and corners. Permute the edges. Permute the corners.
If I were planning to solve this particular puzzle on a regular basis, I might want to master Burgo's method of permuting corners at least, if not also his way of orienting them.
Saturday, July 26, 2014
Bandage Cube Kit—Bandaged Fortress
In October 2012 Burgo posted on the twistypuzzles.com Bandage Cube Kit thread:
The Bandaged Loop above won't prove too much of a challenge to the experienced solvers. So I made a version in which I sought to block known sequences. It looks like a castle so I called it the Bandaged Fortress.Block known sequences is right! It wasn't too hard to come up with some sequences which make for double swaps of edges, and a couple useful 3cycles. And I noticed that the corners couldn't scramble at all. And it seemed that edgeflipping was not an issue either.
But I had trouble scrambling it. The only way I had to scramble it was to use the sequences for solving. That made for nice neat scrambles. I needed more. A trip to the twistypuzzles.com Bandage Kit thread revealed a very nice scrambling sequence that Andrea came up with back in November 2012.
I found a nice way to scramble the bandaged fortress :This opened a can of worms for me. My first scramble using this sequence flipped lots of edges! I decided not to look at Andrea's scrambler any more lest it give me any hints about how to flip edges. In setting out to develop an edge flipper I kept coming up with a sequence that totally scrambled the cube. I just could not think of any other way to flip edges. Finally I decided to solve the scrambled cube, and, lo and behold, when I got everything permuted, 4 edges were flipped. I tried several slight modifications, but always came out with 4 flipped edges.
Top face is white, front face is red
( the fortress looks like a table)
Turn the following sequence one or more time.
Replace the 'x' with 1 or 3.
e.G
Rx (replacee with => 1 = R)
Rx (replace with 3 => R3 = R' )
Now, the sequence :
L2 B U2 F2 Dx R2 D2 Rx F2 R2 Fx D2 F2 Dx R2 U2 Lx B2
each x can be replaced with different numbers.
Easiest case: replace all 'x' with 1
L2 B U2 F2 D R2 D2 R F2 R2 F D2 F2 D R2 U2 L B2
It scrambles the cube very much.
It's not recommended, trying to solve the fortress with this sequence !
Much fun with a good scrambled fortress.
Cheers,
Andrea
What could I do? I used Andrea's scrambler to scramble the cube, then permuted all the edges. 4 needed flipped, so I used my edge flipper algorithm, taking by faith that it flipped the edges while remixing everything up. Then I solved it, and indeed, it worked! I tried her algorithm again only going through it twice before starting my solve. Same idea—permute everything, see what needs flipped, flip 4 edges, permute everything again. This time I had to use other algorithms to move the 4 edges into place before flipping them. It worked.
Then I took a good close look at Andrea's scrambler. It is identical to my edge flipper algorithm!
My Algorithms
AR01: (R2 F2) x 3 double swaps edges UF < > DF and UR < > DR
AR02: R2 F (DE)2 F2 D2 F2 (DE)2 F R2 double swaps UR < > DL and UF < > DF
AR03: AR02 followed by AR01 3cycles DL > DR > UR
AL01: (L2 F2) x 3 double swaps edges UF < > DF and UL < > DL
AL02: L2 Fi (DE)2 F2 D2 F2 (DE)2 Fi L2 double swaps UL < > DR and UF < > DF
AL03: AL02 followed by AL01 3cycles DR > DL > UL
AR04: R2 F (DE)2 F2 D (R2 D2) x 2 R2 Di F2 (DE)2 F R2 3cycles FU > FD > FR
AR05: R2 Fi (DE)2 F2 D (R2 D2) x 2 R2 Di F2 (DE)2 Fi R2 3cycles FU > FR > FD
AL04: L2 Fi (DE)2 F2 Di (L2 D2) x 2 L2 D F2 (DE)2 Fi L2 3cycles FU > FD > FL
AL05: L2 F (DE)2 F2 Di (L2 D2) x 2 L2 D F2 (DE)2 F L2 3cycles FU > FL > FD
AR06: R2 F (DE)2 F2 D R2 D2 Ri F2 R2 F D2 F2 D R2 (DE)2 Ri F2 flips UR DR DL and FR
AR07: R2 F (DE)2 F2 D (R2 D2) x 4 Ri F2 R2 F D2 F2 D R2 (DE)2 Ri F2 flips UR DR DL and DF
AL06: L2 Fi (DE)2 F2 Di L2 D2 L F2 L2 Fi D2 F2 Di L2 (DE)2 L F2 flips UL DL DR and FL
AL07: L2 Fi (DE)2 F2 Di (L2 D2) x 4 L F2 L2 Fi D2 F2 Di L2 (DE)2 L F2 flips UL DL DR and DF
Andrea's Scrambler (translated to my puzzle orientation)
R2 F (DE)2 F2 Dx R2 D2 Rx F2 R2 Fx D2 F2 Dx R2 (DE)2 Rx F2
I am reasonably sure I could solve this puzzle using my algorithms no matter who scrambled it, but I'm not saying it would be easy. For example. On a solved cube I did Burgo's edge flipper. It was a pure double swap of edges that somehow flipped two of them. Nice. So with one double swap done I solved the cube and ended up with two flipped edges at DL and DB. This solve turned out to be slightly easier than the solves from totally scrambled, but still took some work. Now to flip just two edges what I need to do is flip 4 edges including only one of the two that need to flip. Then I'll flip the other one along with the same three. That should do it. It works, but oh my! What a lot of work to accomplish one double swap.
July 27, 2014
When I think of flipped edges, I think of, well, edges that are flipped! Like the blue yellow edge is flipped if when permuted the blue is on the yellow side. Simple. And in the Petrus Method I know how to tell good edges and bad edges and equate bad edges as being flipped, and know how to flip them. But when Burgo says that swapping two adjacent edges on U flips them even though the U color is still on U—huh?!? I think I've seen him explain this in a video once, but it was long ago, and I didn't have any reason to remember it. But today, upon reflecting on it, here is what I came up with, and it seems to work on the Fortress. After scrambling the puzzle using Andrea's scrambler, look at each edge. Imagine it being on an unbandaged cube and using twists of R, F, L, and B, mentally take it home. If it is flipped when it gets home, then it is flipped. Using this idea to flip the edges before solving the puzzle has made for some nice easy solves. Perhaps because my edge flipper algorithm is so similar to Andrea's scrambler algorithm. Maybe.
One more thing. Burgo's 2 edge flipper algorithm, when translated to my solving perspective, is very similar to my other algorithms.
Wednesday, July 23, 2014
Bandage Cube Kit—Bandaged YZ Family
I don't know why exactly, but I like this configuration a lot. It is just fun to play with. Maybe it is the three 2x2x1 blocks. Maybe it is because edges can be solved with EPS and corners permuted with TripleEPS, and oriented with Sune/Mirror. Perhaps because although setups are needed to get around the bandaging, they are not overly complex. There is just something about the feel that is enjoyable.
After a couple solves I decided to share my enjoyment of this puzzle on the twistypuzzles.com thread. I noticed that Burgo listed the Bandaged YZ as a difficult puzzle. I couldn't believe it. So I checked the pictures and noticed that the three little tiles across the middle of the green side are supposed to be one long tile. Maybe I should graduate from my very simplified one to his Unbandaged one before attempting the terribly bandaged one!
Burgo's Unbandaged YZ (below) didn't seem difficult either, although he lists it as difficult. Perhaps I should have scrambled it and solved it several times to see if there were any hidden surprises. But the blue and white faces could be turned from the getgo so 3 of the 5 edges and 4 of the 5 corners that need to be solved are easy to handle. And turning the blue face 180° makes the orange yellow corner edge pair easily accessible. Furthermore doing blue' yellow' puts all little ones on top in such a way that all manner of EPS and Sunes can be done. I even had to swap two edges and it was no problem at all with my standard edge swapper algorithm—U' R U' R' ....
At first Burgo's Bandaged YZ (see below) seemed like it was going to be another relatively easy solve.
First Solve:
3cycle: (RUi RiU) x n Ri RUiRi Di RURi D R (UiR URi) x n
The idea is that you can twist corner 1 by cycling it to 2 with n = 0, then cycle it back with n = 2 or 4 depending on how it needs to twist. Notice the UFLs and RDFs above? But the piece at 2 twists. That is the key. Same thing works for corner 3. Cycle 3 to 2, then back to 3 with the proper twist. 2 takes care of itself since you can't have just one twisted corner.
After a couple solves I decided to share my enjoyment of this puzzle on the twistypuzzles.com thread. I noticed that Burgo listed the Bandaged YZ as a difficult puzzle. I couldn't believe it. So I checked the pictures and noticed that the three little tiles across the middle of the green side are supposed to be one long tile. Maybe I should graduate from my very simplified one to his Unbandaged one before attempting the terribly bandaged one!
Burgo's Unbandaged YZ (below) didn't seem difficult either, although he lists it as difficult. Perhaps I should have scrambled it and solved it several times to see if there were any hidden surprises. But the blue and white faces could be turned from the getgo so 3 of the 5 edges and 4 of the 5 corners that need to be solved are easy to handle. And turning the blue face 180° makes the orange yellow corner edge pair easily accessible. Furthermore doing blue' yellow' puts all little ones on top in such a way that all manner of EPS and Sunes can be done. I even had to swap two edges and it was no problem at all with my standard edge swapper algorithm—U' R U' R' ....
At first Burgo's Bandaged YZ (see below) seemed like it was going to be another relatively easy solve.
First Solve:
 Bandaged pieces—easy
 Edges—easy
 Permuting Corners—easy
 Orienting Corners—required coming up with an all new technique that I've never seen before which uses a combination of Edge Piece Series and a Corner 3cycle.
 Bandaged pieces—easy
 Edges—easy
 Permuting Corners—not easy, but not difficult
 Orienting Corners—interesting
 Need to twist 1, 2, 5, 7
 Did 1 with 3cycle and 3cycle' (2)
 Did 5 with 3cycle and 3cycle' (4)
 3cycle 2 to 3
 Double swap 3 to 1 and 7 to 2 (TripleEPS)
 Twist 2 and 7 with 3cycle and 3cycle' (2)
 Noticed I now needed an n=1 3cycle, so didn't have to undo steps 4 and 5. :D
3cycle: (RUi RiU) x n Ri RUiRi Di RURi D R (UiR URi) x n
 n = 0 moves UFL > URF > RDF
 n = 2 moves UFL > RFU > RDF
 n = 4 moves UFL > FUR > RDF
 n = 1 moves UFL > FRD > RUB
The idea is that you can twist corner 1 by cycling it to 2 with n = 0, then cycle it back with n = 2 or 4 depending on how it needs to twist. Notice the UFLs and RDFs above? But the piece at 2 twists. That is the key. Same thing works for corner 3. Cycle 3 to 2, then back to 3 with the proper twist. 2 takes care of itself since you can't have just one twisted corner.
Monday, July 21, 2014
Bandage Cube Kit—Recap of Summer Solves So Far
Traffic Jam

6/23/14

So named on rline’s youtube video. 
Bandaged 3

6/24/14

Had to get a hint from the forum. Get F2L then use LDL’ to put the vertical post on the bottom. 
2bar

6/25/14

Had to get a couple hints from rline’s blog. Edges first. 3x3x2 CPS to solve corners. Bars on L and R. 
3slices

6/25/14

This one is the easiest one yet for me. Reminds me of the F2L part of the Petrus method. 
Fuse

6/27/14

Righthanded TripleEPS (RUR’U’) followed by lefthanded (F’U’FU) 3cycles corners on top (on U). 
Edge Road

6/27/14

Simple using the techniques described above. 
Corner Road

6/29/14


Belt Road

6/30/14


Stalactites

7/1/14


Stalagmites and Stalactites

7/2/14


Unbandaged Big Block v1

7/2/14

Similar to all the rest of the Big Blockish types so far. i.e. get block then orient edges… 
Unbandaged Big Block v2

7/2/14

Orienting edges was tricky but possible. 
Unbandaged Big Block v3



Bandaged Clock Mars

7/4/14

Edges First 
Bandaged Clock Saturn

7/4/14


3 Bar

7/4/14

Similar to 3x3x2 
3 Bar Clock

7/5/14

Edges First; 3x3x2; 1x2 corners first; last 3cycle tricky—needed setup. 
Mr T

7/6/14

Swap of corneredge pairs needed at end. Never did codify how to do it, but did it. 
Unbandaged Walli

7/7/14

Very easy 
Walli

7/8/14

Got it down to needing to twist two corners but they are not in corners that can be twisted using the sune/mirror dune method. Finally got it! 3cycle the corners into the correct positions, then twist them, then 3cycle them back. 
Detiled Corners Only Fuse3

7/10/14

Could get close but not finish it, so finally sat down with a notebook and figured it out. 
Fuse3 minus 5 edges

7/11/14

Used the Corner 4cycle to hide the edge. It worked. 
Fuse3 minus 4 edges

7/12/14

Worked out a fairly thorough solution and documented it on Puzzled 2. 
Fuse3

7/14/14

Worked out a fairly thorough solution and documented it on Puzzled 2. 
Bandage Loop

7/15/14

Documented on old blog post. 
Unbandaged Flying Carpets

7/15/14

I struggled to get the middle layer, but finally achieved it by trying to organize the 2x1 yellows somewhat. Then when I looked at the yellows all I needed to do was twist 3 corners to have a pattern that pleases me. I have "iii" on one side, and "iÃ¶" on the other side. (from PM to Burgo) 
budlcuber 01

7/15/14

I made a puzzle and solved it. Then I extended it to budlcuber 02 and am totally baffled. 
budlcuber 02

7/17/14

Documented on blog 
budlcuber 03

7/18/14

Documented on blog 
budlcuber 04

7/18/14

Fully tiled version of 0103. Documented on the blog. 
Big Block Clock

7/19/14

A couple solves. The first one fell together a bit easier, but the second wasn’t all that bad. 
Unbandaged Big Block Clock v1

7/20/14

Scrambled, solved down to a tricky 4cycle, gave up. Approached it from the “analyze what CAN be done” perspective and figured it out. Scrambled and solved. 
Unbandaged Big Block Clock v2

7/20/14

This one solves like the others but looks sort of like budlcuber 04. Sort of. 
Stonehenge

7/21/14

Very similar to Unbandaged Big Block Clock v2 but with a 2x1x1 column under the 2x2x1 roof. 
Bandage 3+

7/22/14

When it was down to 2 corners needing twisted with the 2x2x1 on D and 1x1x1 at 3, RU’R’ F’U2F makes it so the Sune/Mirror twister works. 
Saturday, July 19, 2014
Bandage Cube Kit—Big Block Clock Family including Stonehenge
I solved Big Block Clock once in December 2012 and had a terrible time with it. LINK to blog entry.
Today it was much easier. A little Petrus to get the F2L, and Sune to get the LL edges. Then TripleEPS to place the LL corners and some creative use of Sune/Mirror Sune to twist 2 corners at a time. It is a bit tricky because of the clock hands but not that hard. Solved 2 or 3 times today.
Unbandaged Big Block Clock v1 was next. At first it seemed easy enough, but I got stuck at the end. After retiling the last 4 corners and experimenting a little I realized that it wasn't that hard after all. So I scrambled and solved it a time or two.
Now for Unbandaged Big Block Clock v2. I haven't solved it yet, but it reminds me a bit of budlcuber 04. I don't think they will solve anything the same, but they look similar.
July 21, 2014
v2 done yesterday. Today Stonehenge was made and solved. I'm including it in the Big Block Clock
Family because it is identical to v2 only with the orange blue edge/orange blue white corner replaced by a 2x1x1 block. It was surprisingly easy.
Since v2 looks sort of like budlcuber 04 and Stonehenge is a close kin to v2, I have to add a 2x1x1 to budlcuber 04 and make budlcuber 05.
(Later) Tried it and decided it makes it impossibly difficult. At least it makes it a whole new challenge that I am not up to at this point, so I went on to Bandaged 3+.
Today it was much easier. A little Petrus to get the F2L, and Sune to get the LL edges. Then TripleEPS to place the LL corners and some creative use of Sune/Mirror Sune to twist 2 corners at a time. It is a bit tricky because of the clock hands but not that hard. Solved 2 or 3 times today.
Unbandaged Big Block Clock v1 was next. At first it seemed easy enough, but I got stuck at the end. After retiling the last 4 corners and experimenting a little I realized that it wasn't that hard after all. So I scrambled and solved it a time or two.
Now for Unbandaged Big Block Clock v2. I haven't solved it yet, but it reminds me a bit of budlcuber 04. I don't think they will solve anything the same, but they look similar.
July 21, 2014
v2 done yesterday. Today Stonehenge was made and solved. I'm including it in the Big Block Clock
Family because it is identical to v2 only with the orange blue edge/orange blue white corner replaced by a 2x1x1 block. It was surprisingly easy.
Since v2 looks sort of like budlcuber 04 and Stonehenge is a close kin to v2, I have to add a 2x1x1 to budlcuber 04 and make budlcuber 05.
(Later) Tried it and decided it makes it impossibly difficult. At least it makes it a whole new challenge that I am not up to at this point, so I went on to Bandaged 3+.
Friday, July 18, 2014
Bandage Cube Kit—budlcuber 03 & 04
In the last post I meandered my way from the Unbandaged Flying Carpets to budlcuber 02 with a quick mention of budlcuber 01, which was very similar to budlcuber 02. budlcuber 03 continues the series by adding the remainder of the edges. In my opinion it is not much more difficult than 02.
Here it is—budlcuber 03
And here is budlcuber 04—
I found this fully tiled version to be extremely challenging and so far have only solved it once. Had to come up with a brand new sequence to orient two corners at the end and then restore the edges that moved. I have this niggling feeling that there is probably an easier way.
Recap of versions
budlcuber 01—A green, orange, white frame, and a red, blue, yellow frame
budlcuber 02—Fill the blue, yellow, red frame with a 3x1x1 block
budlcuber 03—Add all the missing edges
budlcuber 04—Add all the missing corners
Algorithms
Green Front; Red Up—R FiLF2 RiDR B2 Orange Front; Yellow Up— From solved to working state
R2 Green Front; Red Up RiDiR F2LiF Ri— From working state to solved state
R2 U2 R U2 R2— FR > UR > BR > UL
(U2 Li U2 L) x 3— 12487
(U2 Li U2 L) x 5— FL > UL > UR
RiFR Ui RiFiR— Flip UL and UF (and move stuff all around)
(RiFR U RiFiR Ui) x 2— Flips FL UF UR UB
LSune U Lantisune ULiUiL (U2 Li U2 L) x 5 LiULU2—Twists 2 clock and 7 anti (no longer use)
LSune Ui Lantisune U2 LiUiL U2 (U2 Li U2 L) x 5 U2 LiULUi—1 anti and 2 clock (no longer use)
(LSune U2 Lantisune U2) x 2—8 clock and 2 anti (came up with this 8/11)
August 11, 2014
After working through most of Burgo's list, I decided to review my creation and wait until I have time to concentrate before moving on to the Very Hard ones. While doing mine this time I was trying to recall how the long corner twister works. Somewhere along the line I started wondering if there were any simpler Sunebased pure corner twisters that used only 2 sides. Came up with one, and added it above at the bottom of the list of algorithms.
Here it is—budlcuber 03
And here is budlcuber 04—
I found this fully tiled version to be extremely challenging and so far have only solved it once. Had to come up with a brand new sequence to orient two corners at the end and then restore the edges that moved. I have this niggling feeling that there is probably an easier way.
Recap of versions
budlcuber 01—A green, orange, white frame, and a red, blue, yellow frame
budlcuber 02—Fill the blue, yellow, red frame with a 3x1x1 block
budlcuber 03—Add all the missing edges
budlcuber 04—Add all the missing corners
Algorithms
Green Front; Red Up—R FiLF2 RiDR B2 Orange Front; Yellow Up— From solved to working state
R2 Green Front; Red Up RiDiR F2LiF Ri— From working state to solved state
R2 U2 R U2 R2— FR > UR > BR > UL
(U2 Li U2 L) x 3— 12487
(U2 Li U2 L) x 5— FL > UL > UR
RiFR Ui RiFiR— Flip UL and UF (and move stuff all around)
(RiFR U RiFiR Ui) x 2— Flips FL UF UR UB
LSune U Lantisune ULiUiL (U2 Li U2 L) x 5 LiULU2—Twists 2 clock and 7 anti (no longer use)
LSune Ui Lantisune U2 LiUiL U2 (U2 Li U2 L) x 5 U2 LiULUi—1 anti and 2 clock (no longer use)
(LSune U2 Lantisune U2) x 2—8 clock and 2 anti (came up with this 8/11)
August 11, 2014
After working through most of Burgo's list, I decided to review my creation and wait until I have time to concentrate before moving on to the Very Hard ones. While doing mine this time I was trying to recall how the long corner twister works. Somewhere along the line I started wondering if there were any simpler Sunebased pure corner twisters that used only 2 sides. Came up with one, and added it above at the bottom of the list of algorithms.
Tuesday, July 15, 2014
Bandage Cube Kit—Unbandaged Flying Carpets & budlcuber 02
Today I solved the Unbandaged Flying Carpets, by Burgo. It was fun. He had posted—a long time ago—on the twistypuzzles.com forum. The interesting thing is that he posted pictures of the scrambled state, not solved. So part of the challenge was making your way to a place without knowing where you were going. I struggled to get the middle layer, but finally achieved it by trying to organize the 2x1 yellows somewhat. Then when I looked at the yellows all I needed to do was twist 3 corners to have a pattern that pleased me. I got "iii" on one side, and "iÃ¶" on the other side.
After solving Unbandaged Flying Carpets I felt like making my own bandaged cube, scrambling it, and posting it online. budlcuber 01 was very simple to solve. Well, when approached correctly it was. So I decided to make it a teeny bit more complex. Now I can't solve it! Here it is in scrambled state:
budlcuber 01 was the same puzzle minus the 3x1x1 block.
budlcuber 02 is almost solved, but even if I can figure out how to flip the last edge, I won't be able to tell you how I got to this point.
Here is what it looks like now. Perhaps it is time to just swap the tiles and start slowly and carefully analyzing it.
July 16, 2014
I tried last night but got nowhere and it was soon a mess again. I had just about decided to detile it and start over where I left off with the ones on Burgo's list on the forum. Another possibility was to break the 3x1x1 into a 2x1x1 and a 1x1x1, but I didn't really want to do that. The problem with this puzzle was that it seemed that the best I could do was have two layers that could twist. Sometimes only one. And even when I could twist two layers I couldn't get any familiar algorithms to work. I was so close to giving up, but decided to fiddle with it one more time today. This time instead of worrying about what I couldn't do, I just looked for things I could do, and wrote them down and recorded the affects. (I'm using Ri for R anti clockwise, because I don't like the way the F' looks.)
With Green on front and Red up, the first thing I tried was—
R RURi FiLiF RURi FiLF Ri
I wasn't overly impressed with the results so went back to solved. Next I tried—
R FiLF2 RiDR y
Surprise! Now L, M, and R can all move! Follow with
LiMiRi
and now L, M, R, and U can all move! So altogether we have—
R FiLF2 RiDR yxR2 from the solved state puts the
3x1x1 at the bottom in R;
The white 2x1 on the bottom at the back of the M slice;
The orange 2x1 on the front at the bottom of the M slice;
The 2x2x1on the bottom back in L.
And what can I do now?
July 17, 2014
Solved! But getting the last corner was a matter of trying the algorithms above in different combinations until something worked. Not real confident about it. I need a corner twister that doesn't move edges.
Breakthrough on another front. Mi U2 M Ri F2 R does a 5 cycle of corners and a 3 cycle of edges. After doing it for awhile I realized it could be shortened to these:
After solving Unbandaged Flying Carpets I felt like making my own bandaged cube, scrambling it, and posting it online. budlcuber 01 was very simple to solve. Well, when approached correctly it was. So I decided to make it a teeny bit more complex. Now I can't solve it! Here it is in scrambled state:
budlcuber 01 was the same puzzle minus the 3x1x1 block.
budlcuber 02 is almost solved, but even if I can figure out how to flip the last edge, I won't be able to tell you how I got to this point.
Here is what it looks like now. Perhaps it is time to just swap the tiles and start slowly and carefully analyzing it.
July 16, 2014
I tried last night but got nowhere and it was soon a mess again. I had just about decided to detile it and start over where I left off with the ones on Burgo's list on the forum. Another possibility was to break the 3x1x1 into a 2x1x1 and a 1x1x1, but I didn't really want to do that. The problem with this puzzle was that it seemed that the best I could do was have two layers that could twist. Sometimes only one. And even when I could twist two layers I couldn't get any familiar algorithms to work. I was so close to giving up, but decided to fiddle with it one more time today. This time instead of worrying about what I couldn't do, I just looked for things I could do, and wrote them down and recorded the affects. (I'm using Ri for R anti clockwise, because I don't like the way the F' looks.)
With Green on front and Red up, the first thing I tried was—
R RURi FiLiF RURi FiLF Ri
I wasn't overly impressed with the results so went back to solved. Next I tried—
R FiLF2 RiDR y
Surprise! Now L, M, and R can all move! Follow with
LiMiRi
and now L, M, R, and U can all move! So altogether we have—
R FiLF2 RiDR yxR2 from the solved state puts the
3x1x1 at the bottom in R;
The white 2x1 on the bottom at the back of the M slice;
The orange 2x1 on the front at the bottom of the M slice;
The 2x2x1on the bottom back in L.
And what can I do now?
 The Sune Family! The cube, or at least the bottom layers need to be spun around for some. Example—(DE)2 Ri or y2 sets it up for a righthanded Sune.
 LiUi LU and y2Ri RU RiUi.
 (Righthand Sune) (DE)2 L (Lefthand Sune) Li (DE)2 RU RiU moves UF > UB > UR and twists corners 2, 7, and 8 clockwise.
 With the 3x1x1 in R do R2 U2 R U2 R2 to cycle FR > UR > BR > UL.
July 17, 2014
Solved! But getting the last corner was a matter of trying the algorithms above in different combinations until something worked. Not real confident about it. I need a corner twister that doesn't move edges.
Breakthrough on another front. Mi U2 M Ri F2 R does a 5 cycle of corners and a 3 cycle of edges. After doing it for awhile I realized it could be shortened to these:
 (U2 Li U2 L) x 3 cycles 1>2>4>8>7 A Pure Corner Cycle!
 (U2 Li U2 L) x 5 cycles UL > UR > FL A Pure Edge Cycle!
To get back from the working state to solved state—
 R2x'y' RiDiR F2LiF Ri
As far as the corner twister goes, Once all the edges are solved, get the corner to 1, twist it using Li Ui L U times 2 or 4, if necessary. Then move it into place using the pure 5 cycle. Then Use Li Ui L U times whatever until the edges are solved.
I think I've got everything I need to solve this little bugger. Ain't so impossible after all.
The finished product—
I think I've got everything I need to solve this little bugger. Ain't so impossible after all.
The finished product—
Monday, July 14, 2014
Bandage Cube Kit—Fuse3
Solved!
After RUF' RU2R'
So solve to these and do
RU2R' FU'R' and its done!
Last night I discovered a way to twist 4 corners without cycling edges at the same time! Yay!
( ( R' F' ( R U R' U' ) F R ) (R' F2 y' ( R U2 R' U' R U' R' ) y ) ) x 2
I think of it as doing the RU corner swapper followed by an antisune, and doing it twice.
It twists 2 and 8 anti, and 4 and 6 clock. 2 is what I call UFR, 4 is DFL, 6 is DBR, and 8 is UBL.
Then later there was cause for more rejoicing. Whereas the first discovery was the result of deliberate documentation, the second one was stumbled upon while scrambling. After a few twists I realized that all three 2x1x1 posts were planted in the F2L. After solving it, further experimentation uncovered the way to get there from the place where the 2x1x1 pieces are solved—RUF' RU2R'. This state allows use of F RUR'U' F' and its buddy, for flipping edges. It also allows for the Sune family of cycling edges and twisting corners, which may make the previously mentioned discovery obsolete.
While on the topic of Sune, I'd like to mention a very nice little Word document that Burgo put online that has a way to use Sune to do a pure 3cycle of edges. Righthanded Sune, y, Lefthanded Sune, y' cycles UF > UL > UB. After undoing the setup with RU2R' FU'R' it translates to FD > UB > UL.
In the previous post I included some algorithms. I don't know exactly how many I will actually use now, but here is a more complete list:
Solving the 2x1x1 Pieces
Something that can help in some situations to get the 3 2x1x1 pieces is R ( U R U' R' ) or ( R U R' U' ) R'.
3cycle of Corners
3>4>2 followed by 3>6>2 followed by 4>3>2 cycles 2>6>4 and returns the 3 2x1x1 pieces to their solved state.
Corner Swappers and Twisters
R' F' ( R U R' U' ) F R swaps 2 and 4, and 6 and 8, and cycles edges.
R' F' ( R U R' U' ) x 2 F R twists 2 and 4 clock, and 6 and 8 anti, and cycles edges.
R' F' ( R U R' U' ) x 4 F R twists 2 and 4 anti, and 6 and 8 clock, and cycles edges.
F R ( F' U' F U ) R U R2 F' swaps only 2 and 4, and cycles edges.
( ( R' F' ( R U R' U' ) F R ) (R' F2 y' ( R U2 R' U' R U' R' ) y ) ) x 2 twists 2 and 8, and 4 and 6 without cycling edges.
3cycle of Edges
R' F' ( R U R' U' ) F R swaps some corners and does FD > RB > UB.
R' F2 y' ( R U R' U R U2 R' ) y F2 R swaps some corners and does FD > RB > UB.
( RUF' RU2R' ), Righthanded Sune, y, Lefthanded Sune, y' ( RU2R' FU'R' )
cycles FD > UB > UL with no corners affected.
Edge Flippers
( R' F' ( R U R' U' ) F R ) (R' F2 y' ( R U2 R' U' R U' R' ) y F2 R )
flips FD and UB and swaps corners.
( R' F' ( R U R' U' ) F R ) (R' F2 y' ( R U R' U R U2 R' ) y F2 R )
flips FD and RB and swaps corners.
Alternately, one could just solve to the above picture using familiar algorithms, and be 6 twists from solved! :D
Strategy:
 Solve the 2x1x1 pieces.
 Check corners and permute if necessary.
 With white up, solve the two middle layer edges.
 RUF' RU2R'
 Solve the edges.
 Solve the corners.
 RU2R' FU'R'
Although only a small handful of algorithms are actually needed, it was fun coming up with all of these and sorting through them to come up with a strategy.
Subscribe to:
Posts (Atom)